首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   35篇
  国内免费   10篇
电工技术   1篇
综合类   8篇
化学工业   284篇
金属工艺   22篇
机械仪表   3篇
建筑科学   1篇
能源动力   69篇
轻工业   4篇
石油天然气   2篇
无线电   40篇
一般工业技术   202篇
冶金工业   10篇
原子能技术   1篇
自动化技术   6篇
  2023年   23篇
  2022年   12篇
  2021年   15篇
  2020年   56篇
  2019年   34篇
  2018年   13篇
  2017年   38篇
  2016年   29篇
  2015年   38篇
  2014年   51篇
  2013年   45篇
  2012年   33篇
  2011年   33篇
  2010年   41篇
  2009年   26篇
  2008年   24篇
  2007年   29篇
  2006年   23篇
  2005年   17篇
  2004年   11篇
  2003年   17篇
  2002年   19篇
  2001年   11篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有653条查询结果,搜索用时 31 毫秒
1.
Metal–organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.  相似文献   
2.
The realization of seawater electrolysis requires high-performing anode materials that should possess good catalytic activity, stability, and specificity for the oxygen evolution reaction (OER) as well as high resistance toward chloride corrosion. Herein, the design of a multilayered oxygen-evolution electrode is reported to meet the multiple needs of anode material for saline water splitting. The multilayered electrode is synthesized through direct thermal boronization of commercially available NiFe alloy plate with boron powder, followed by electrochemical oxidation. And this electrode is composed of the surface oxidized NiFeBx alloy layer, the NiFeBx alloy interlayer, and the NiFe alloy substrate. The boron species are present in the form of metaborate in the outermost oxidized NiFeBx layer, and their existence is conductive to the generation and stabilization of the catalytic active phase γ-(Ni,Fe)OOH. The introduction of NiFeBx interlayer effectively prevents the excessive oxidative corrosion of the anode material in the electrolyte containing chloride ions.  相似文献   
3.
An effective bi-functional electrocatalyst of Co3O4/Polypyrrole/Carbon (Co3O4/Ppy/C) nanocomposite was prepared through a simple dry chemical method and used to catalyze the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Three types of carbon support as Vulcan carbon, reduced graphite oxide (RGO) and multi-walled carbon nanotubes (MCNTs) were used to study the influence on electrochemical reactions. Spherical shaped Co3O4 nanoparticles with 8–10 nm was found uniformly distributed on Ppy/C composite, which were analyzed by X-ray diffraction and transmission electron microscopy techniques. Amongst, Co3O4/Ppy/MWCNT shows improved bifunctional electrocatalytic activity towards both OER and HER with relatively low over potential (340 mV vs. 490 mV at 10 mA cm−2) and Tafel slope (87 vs. 110 mV dec−1). In addition to that, MWCNT supported Co3O4/Ppy nanocomposite exhibits good electronic conductivity and electrochemical stability up to 2000 potential cycles. The results clearly indicate that the Co3O4/Ppy/MWCNT nanocomposite could be the promising bi-functional electrocatalyst for efficient water electrolysis.  相似文献   
4.
《Ceramics International》2020,46(17):27219-27225
Designing double metal-dielectric (cermet) solar selective absorber coatings (SSACs) often requires complex co-sputtering techniques with multiple targets. This inevitably limits the simple and low-cost industrial fabrication. Here, we develop novel nano-multilayered MoOx-based SSACs by simple and stable one-step reactive magnetron sputtering process using single molybdenum target. The proposed multilayer SSACs exhibit good solar absorptance of 0.93 and low thermal emittance of 0.06. Owing to the temperature-induced oxygen diffusion and oxidation phenomenon the as-sputtered SSACs have a poor thermal tolerance under air atmosphere, and after annealing at 200 °C for 150 h, the resulting absorptance is diminished from 0.93 to 0.90. However, the optical performance of the annealed SSAC is relatively stable in high-vacuum environment, even after annealing at 450 °C for 200 h, it still displays an ideal spectral selectivity of 0.92/0.07. With above properties, the resulting MoOx-based SSAC is a promising absorber for enduring thermal harvesting in solar vacuum collectors.  相似文献   
5.
Understanding the mechanism of graphene synthesis by chemical vapor deposition and the effect of process parameters is critical for production of high-quality graphene. In the present work, we investigated the effect of H2 concentration during annealing on evolution of Cu surface morphology, and on deposited graphene characteristics. Our results revealed that H2 had a smoothening effect on Cu surface as its surface roughness was reduced significantly at high H2 concentration along with the formation of surface facets, dents and nanometer-sized particles. Furthermore, H2 content influenced the graphene morphology and its quality. A low H2 concentration (0% and 2.5%) during annealing promoted uniform and good quality bilayer graphene. In contrast, a high concentration of H2 (20% and 50%) resulted in multilayer, non-uniform and defective graphene. Interestingly, the annealed Cu surface morphology differed considerably from that obtained after deposition of graphene, indicating that graphene deposition has its own impact on Cu surface.  相似文献   
6.
Absorbents with “tree-like” structures, which were composed of hollow porous carbon fibers (HPCFs) acting as “trunk” structures, carbon nanotubes (CNTs) as “branch” structures and magnetite (Fe3O4) nanoparticles playing the role of “fruit” structures were prepared by chemical vapor deposition technique and chemical reaction. Microwave reflection loss, permittivity and permeability of Fe3O4–CNTs–HPCFs composites were investigated in the frequency range of 2–18 GHz. It was proven that prepared absorbents possessed the excellent electromagnetic wave absorbing performances. The bandwidth with a reflection loss less than −15 dB covers a wide frequency range from 10.2 to 18 GHz with the thickness of 1.5–3.0 mm, and the minimum reflection loss is −50.9 dB at 14.03 GHz with a 2.5 mm thick sample layer. Microwave absorbing mechanism of the Fe3O4–CNTs–HPCFs composites is concluded as dielectric polarization and the synergetic interactions exist between Fe3O4 and CNTs–HPCFs.  相似文献   
7.
Sb-doped (BiO)2CO3 nanoplates have been successfully fabricated via a facile hydrothermal method. XRD patterns, XPS spectra, SEM and TEM images demonstrated that doping with antimony (Sb) has no effect on the crystal phase, morphology and structure of (BiO)2CO3 nanoplates. However, the red shift of diffraction peak in the 2θ range of 29–32° was observed, which could be attributed to the substitution of larger radius of Bi atoms by lower radius of Sb atoms resulting in the decrease of lattice parameters. The photocatalytic performance of Sb-doped (BiO)2CO3 nanoplates was evaluated by the degradation of RhB upon visible light irradiation. It was found that the visible-light-induced photocatalytic activity of Sb-doped (BiO)2CO3 nanoplates was significantly improved, which was mainly attributed to its enhanced surface area and electron transfer rate. It was proposed that RhB photodegradation proceeded through a photosensitization pathway upon visible light irradiation.  相似文献   
8.
While the noble metals (e.g., platinum, (Pt)) remain the benchmark electrocatalyst for the hydrogen evolution reaction (HER), their mass production require a reduced metal loading and faster fabrication protocols. The aim of the present work is to prepare Pt thin films by simple and fast fabrication technique, and to evaluate their performance for HER. The thin films of Pt are grown on two substrates, namely titanium foil (Ti) and nickel foam (NF), using a single step aerosol assisted chemical vapor deposition (AACVD) method. The film deposition time are varied from 20 to 60 min. Microscopic analyses suggest a gradual evolution of the films into percolated and/or porous nanostructures, a feature that remains highly desired to allow the maximum access of active sites. The performance of the as-prepared electrodes is evaluated by monitoring the HER in acidic electrolyte. The Pt film on nickel foam (Pt/NF) exhibits better electrical conductivity and smaller charge transfer resistance, while the film deposited on the Ti foil (Pt/Ti) demonstrates superior catalytic activity per active sites. The as-prepared Pt/Ti and Pt/NF electrodes produce 10 mA cm−2 at overpotential of 28 mV and 26 mV, respectively, better in performance than commercial Pt/C electrode (~39 mV), set a new bench mark electrocatalyst for the HER.  相似文献   
9.
A new polymerizable 1,1′‐bi‐2‐naphthol derivative for polymer‐supported catalytic asymmetric synthesis is presented. The synthesis is conducted within a single reaction step, which is a major advantage over other approaches presented in the literature. The ligand‐bearing polymer is prepared through copolymerization with N‐isopropylacrylamide. Preliminary experiments on the utility in catalytic asymmetric alkylation reactions reveal the accessibility and activity of the polymer‐attached catalysts. The stereoselectivity of the reaction is found to be somewhat lower than for reactions performed in the presence of free 1,1′‐bi‐2‐naphthol, and thus requires further optimization. The enantiomeric excess of the reaction products was determined via 1H NMR spectroscopy after chiral derivatization with (R)‐α‐methylbenzyl isocyanate. © 2015 Society of Chemical Industry  相似文献   
10.
For boosting oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs), a new type of multi-functional catalyst with high activity, high stability, and low cost has been designed and prepared by introducing high proportions of M (M = Fe, Ni) metals in Pt-based nanoparticles through a microwave-assisted polyol method, followed by thermal annealing process. A uniform dispersion of nanoparticles (5 nm) and a face-centered tetragonal (fct) phase improve the activity and stability of the Pt–Fe–Ni/C catalyst. Owing to differences in the surface energies of the alloying elements, Pt atoms with low surface energy have a tendency to segregate from the subsurface to the surface during the annealing. This tendency exposes the internal Pt atoms to the surface of the nanoparticles in the existence of high proportions of M metals, significantly improving the utilization of Pt. As a cathode catalyst, the Pt–Fe–Ni/C catalyst annealed at 675 °C with a mass activity of 0.73 A/mgPt, which is 3.5 times higher than that of the commercial Pt/C catalyst, exhibits an excellent half-cell performance. An accelerated durability test demonstrates that the prepared Pt–Fe–Ni/C-675 catalyst is more stable than the commercial Pt/C. The proposed multi-functional catalyst has great potential for PEMFCs and other applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号